MMFUtils Documentation
Release 0.5.4dev

Michael McNeil Forbes

Apr 28, 2021

mmfutils

1.1 mmfutils.interface
1.2 mmfutils.containers
1.3 mmfutils.contexts
1.4 mmfutils.debugging

1.5 mmfutils.math

1.6 mmfutils.optimize
1.7 mmfutils.performance

1.8 mmlfutils.plot

1.9 mmfutils.parallel

1.10 mmfutils.solve

1.11 mmfutils.testing

2.1 Imstalling

3.1 Containers v iuiu e
32 ContextS v i e e e e e e e
33 Interfaces
34 Parallel

3.6 Plotting

MMF Utils

Usage

3.5 Performance

3.7 Angular Variables

3.8 Debugging

3.9 Mathematics

Developer Instructions
4.1 Releases,

Change Log

51 REL:054 o
52 REL:053
53 REL:05.1 o oo
54 REL:050

5.5 REL:04.13
5.6 REL:04.10

57 REL:049o
58 REL:04.7

Indices and tables

CONTENTS

D W W

........................... 34

Python Module Index

Index

51

53

MMFUtils Documentation, Release 0.5.4dev

Contents:

CONTENTS 1

MMFUtils Documentation, Release 0.5.4dev

2 CONTENTS

CHAPTER
ONE

MMFUTILS

1.1 mmfutils.interface

Stand-in for zope.interface if it is not available.

class mmfutils.interface.Attribute (__name__, __doc__=")
Bases: zope.interface.interface.Element

Attribute descriptions
interface = None
interface mmfutils.interface.Interface

mmfutils.interface.describe_interface (interface, format="ipython')
Return an HTML object for Jupyter notebooks that describes the interface.

Parameters
* interface (Interface)— Interface to extract documentation from.

e format ('rst', 'html', 'ipython') — Return format. ‘rst’ is raw Re-
structuredText, ‘html’ is packaged as HTML, and ‘ipython’ is packaged as an
[Python.display. HTML() object suitable for Jupyter notebooks.

Example

>>> class IExample (Interface):
x = Attribute ("Floating point number")
def two () :
e "Return two"
>>> print (describe_interface (IExample, format='rst').strip())
‘T IExample”

Attributes:
'x’" —-= Floating point number
Methods:

““two () —-— Return two

You can also get this wrapped as HTML.:

MMFUtils Documentation, Release 0.5.4dev

>>> print (describe_interface (IExample, format='html').strip())
<!DOCTYPE html

<p><tt class="docutils literal">IExample</tt></p>

<blockquote>

<p>Attributes:</p>

<blockquote>

<tt class="docutils literal">x</tt> -- Floating point number</blockquote>
<p>Methods:</p>

<blockgquote>

<tt class="docutils literal">two()</tt> —- Return two</blockquote>
</blockquote>

</div>

In a Jupyter notebook, this will properly display:

>>> describe_interface (IExample)
<IPython.core.display.HTML object>

Other formats are not yet supported:

>>> describe_interface (IExample, format='WYSIWYG')
Traceback (most recent call last):

NotImplementedError: format WYSIWYG not supported

class mmfutils.interface.implementer (*inferfaces)
Bases: object

Declare the interfaces implemented by instances of a class.
This function is called as a class decorator.

The arguments are one or more interfaces or interface specifications (~zope.interface.interfaces.IDeclaration
objects).

The interfaces given (including the interfaces in the specifications) are added to any interfaces previously de-
clared, unless the interface is already implemented.

Previous declarations include declarations for base classes unless implementsOnly was used.

This function is provided for convenience. It provides a more convenient way to call classlmplements. For
example:

@implementer (I1)
class C(object):
pass

is equivalent to calling:

classImplements (C, Il)

after the class has been created.

See also:

classImplements The change history provided there applies to this function too.
interfaces

mmfutils.interface.verifyClass (iface, candidate, tentative=False)
Verify that the candidate might correctly provide iface.

4 Chapter 1. mmfutils

https://docs.python.org/3/library/functions.html#object

MMFUtils Documentation, Release 0.5.4dev

mmfutils.interface.verifyObject (iface, candidate, tentative=False)
Verify that candidate might correctly provide iface.

This involves:

* Making sure the candidate claims that it provides the interface using i face.providedBy (unless ten-
tative is True, in which case this step is skipped). This means that the candidate’s class declares that it
implements <zope.interface.implementer> the interface, or the candidate itself declares that it provides
<zope.interface.provider> the interface

* Making sure the candidate defines all the necessary methods
* Making sure the methods have the correct signature (to the extent possible)

* Making sure the candidate defines all the necessary attributes

Return bool Returns a true value if everything that could be checked passed.
Raises zope.interface.Invalid - If any of the previous conditions does not hold.
Changed in version 5.0: If multiple methods or attributes are invalid, all such errors are collected and reported.

Previously, only the first error was reported. As a special case, if only one such error is present, it is raised alone,
like before.

1.2 mmfutils.containers

Provides convenience containers that support pickling and archiving.

Archiving is supported through the interface defined by the persist package (though use of that package is optional
and it is not a dependency).

class mmfutils.containers.Container (*argv, **kw)
Bases: mmfutils.containers.Object, collections.abc.Sized, collections.abc.
Iterable,collections.abc.Container

Simple container object.

Attributes can be specified in the constructor. These will form the representation of the object as well as picking.
Additional attributes can be assigned, but will not be pickled.

Examples

>>> ¢ = Container(b='Hi', a=1)

>>> ¢ # Note: items sorted for consistent repr
Container (a=1, b='Hi'")

>>> cCc.a

1

>>> c.a = 2

>>> cCc.a

>>> tuple (c) # Order is lexicographic

(2, 'Hi")

>>> c.x = 6 # Will not be pickled: only for temp usage
>>> C.X

>>> 'a' in c
True

(continues on next page)

1.2. mmfutils.containers 5

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sized
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Container

MMFUtils Documentation, Release 0.5.4dev

(continued from previous page)

>>> 'x' in c¢

False

>>> import pickle

>>> cl = pickle.loads (pickle.dumps(c))
>>> ¢l

Container (a=2, b='Hi'")

>>> cl.x

Traceback (most recent call last):

AttributeError: 'Container' object has no attribute 'x'

class mmfutils.containers.ContainerDict (*argv, **kw)
Bases: mmfutils.containers.Container,collections.abc.MutableMapping

Simple container object that behaves like a dict.

Attributes can be specified in the constructor. These will form the representation of the object as well as picking.
Additional attributes can be assigned, but will not be pickled.

Examples

>>> from collections import OrderedDict
>>> ¢ = ContainerDict (b='Hi', a=1)

>>> ¢ # Note: items sorted for consistent repr
ContainerDict (a=1, b='Hi')

>>> c['a']

1

>>> c['a']l] = 2

>>> c.a

2

>>> OrderedDict (c)

OrderedDict ([('a', 2), ('b', 'Hi")])

class mmfutils.containers.ContainerList (*argv, **kw)
Bases: mmfutils.containers.Container,collections.abc.Sequence

Simple container object that behaves like a list.

Examples

>>> ¢ = ContainerList (b="'Hi', a=1)

>>> ¢ # Note: items sorted for consistent repr
ContainerList (a=1, b='Hi')

>>> c[0]

>>> c[0] = 2
>>> c.a

>>> tuple(c) # Order is lexicographic
(2, "Hi')

class mmfutils.containers.Object (**w)
Bases: mmfutils.containers.ObjectMixin, mmfutils.containers.ObjectBase

Extension of Object with pickling support.

6 Chapter 1. mmfutils

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

MMFUtils Documentation, Release 0.5.4dev

Pickling will save only those variables defined in picklable_attributes which is usually defined when the base
__init__is finished. The ini#() method will be called upon unpickling, thereby allowing unpicklable objects to
be used (in particular function instances).

Note: Do not use any of the following variables:
e _empty_state: Reserved for objects without any state
* _independent_attributes:
* _dependent_attributes:
o _strict: If True, then only picklable attributes will be settable through __setattr__ ().
e _check: If True, check that objects are actually picklable when they are set.

* _reserved_attributes: List of special attributes that should be excluded from processing.

To allow for some variables to be set without invalidating the object we also check the set of names _indepen-
dent_attributes.

Examples

>>> class A (Object):

def _ init_ (self, x=0):
self.x = x
super () .__init__ ()

def init (self):
self.xl = self.x + 1 # A dependent variable
super () .init ()

def check(self):
if not self.initialized:

raise AssertionError ("Please call init()!")
C return self.x1l == self.x + 1
>>> a = A(x=0)
>>> a.check ()
True
>>> a.x = 2.0

>>> a.check ()
Traceback (most recent call last):

AssertionError: Please call init()'!
>>> a.init ()

>>> a.check ()

True

class mmfutils.containers.ObjectBase (**w)
Bases: object

General base class with a few convenience methods.
Summary:

e __init__ () sets parameters and calls inif()

* init() calculates all other parameters.

Motivation:

1.2. mmfutils.containers 7

https://docs.python.org/3/library/functions.html#object

MMFUtils Documentation, Release 0.5.4dev

The motivation is objects intended to be used in computationally demanding settings. The idea is that the init()
method will be called before starting a computation, ensuring that the object is up-to-date, and performing any
expensive calculations. Then the object can be used in a computationally demanding setting.

I have been using this approach for some time and am generally happy with how it works. Some care is needed
nesting calls to inif() in derived classes, but I have found these cases easy to deal with. Other approaches such
as using properties can carry a performance hit. Writing setters can work well, but demands a lot from the
developer and become very complicated when properties depend on each other.

Details:

* The constructor __init__() should only be used to set variables in self. The reason is that the code here
uses the variables set in the constructor to determine which attributes need to be pickled. Initialization of
computed attributes should instead be done in the inif() method .

* The constructor __init__() takes kwargs and will set these. This allows using super().__init__(). See e.g.:
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

* The constructor will store all assigned variables (in __dict__()) to a list picklable_attributes which can
then be used by the Object to provide pickling services. Here we simply use this to set an initialized flag
to note the user that the object might be invalid and need init() called again.

* The init() method should make sure that the object ends in a consistent state so that further computations
(without users setting attributes) can be computed efficiently. If the user sets attributes, init() should be
called again.

Note: Do not use any of the following variables:

e picklable_attributes: Reserved for the list of attributes that will be pickled. If this has been stored in
self.__dict__ then the constructor chain has finished processing.

* initialized: Used to flag if attributes have been changed but without inif() being called.

By default setting any attribute in picklable_attributes will set the initialized flag to False. This will be set to
True when init() is called. Objects can then include an assert self.initialized in the appropriate places.

Note: This redefines __setattr__ to provide the behaviour.

Examples

>>> class A (ObjectBase):

def _ init_ (self, x=0):
super () .__init__ (x=x)

def init (self):
self.xl = self.x + 1 # A dependent variable
super () .init ()

def check(self):
if not self.initialized:

raise AssertionError ("Please call init()!")
. return self.x1l == self.x + 1
>>> a = A(x=0)
>>> a.check ()
True
>>> a.x = 2.0

(continues on next page)

8 Chapter 1. mmfutils

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

MMFUtils Documentation, Release 0.5.4dev

(continued from previous page)

>>> a.check ()
Traceback (most recent call last):

AssertionError: Please call init ()!
>>> a.init ()

>>> a.check ()

True

__setattr__ (key, value)
Sets the initialized flag to False if any picklable attribute is changed.

get_persistent_rep (env)
Return (rep, args, imports).

Define a persistent representation rep of the instance self where the instance can be reconstructed from the
string rep evaluated in the context of dict args with the specified imports = list of (module, iname, uiname)
where one has either import module as uiname, from module import iname or from module import iname
as uiname.

This satisfies the IArchivable interface for the persist package.
init ()

Initialize Object.
initialized = False

picklable_attributes = ()

1.3 mmfutils.contexts

Various useful contexts.

class mmfutils.contexts.CoroutineWrapper (coroutine)
Bases: object

Wrapper for coroutine contexts that allows them to function as a context but also as a function. Similar to
open () which may be used both in a function or as a file object. Note: be sure to call c1ose () if you do not
use this as a context.

close ()
send (*v)

class mmfutils.contexts.NoInterrupt (ignore=True)
Bases: object

Suspend the various signals during the execution block and a simple mechanism to allow threads to be inter-
rupted.

Parameters ignore (bool) — If True, then do not raise a KeyboardInterrupt if a soft interrupt is
caught unless forced by multiple interrupt requests in a limited time.

There are two main entry points: globally by calling the suspend () method, and within a NoTnterrupt ()
context.

Main Thread

When executed in a context from the main thread, a signal handler is established which captures interrupt signals
and represents them instead as a boolean flag (conventionally called “interrupted”).

1.3. mmfutils.contexts 9

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

MMFUtils Documentation, Release 0.5.4dev

Global interrupt suppression can be enabled by creating a NoInterrupt () instance and calling suspend ().
This will stay in effect until restore () is called, a forcing interrupt is received, or the instance is deleted.

Additional calls to suspend () will reinstall the handlers, but they will not be nested.

Interrupts can also be suspended in contexts. These can be nested. These instances will become False at the

end of the context.

Auxiliary Threads

Auxiliary threads can create instances of NoInterrupt () or use contexts, but cannot call suspend () or
restore (). In these cases the context does not suspend signals (see below), but the flag is still useful as it
can act as a signal force the auxiliary thread to terminate if an interrupt is received in the main thread.

A couple of notes about using the context in auxiliary threads.

1. Either suspend () must be called globally or a context must first be created in the main thread - otherwise
the signal handlers will not be installed. An exception will be raised if an auxiliary thread tries to create a

context without the handlers being installed. this case.

2. As stated in the python documents, signal handlers are always executed in the main thread. Likewise, only
the main thread is allowed to set new signal handlers. Thus, the signal interrupting facilities provided here
only work properly in the main thread. Also, forcing an interrupt cannot raise an exception in the auxiliary

threads: one must wait for them to respond to the changed “interrupted” value.

For more information about killing threads see:

* http://stackoverflow.com/questions/323972/is-there-any-way-to-kill-a-thread-in-python

force_n
Number of interrupts to force signal.

Type int

force_timeout

Time in which force_n interrupts must be received to trigger a forced interrupt.

Type float

Examples

The simplest use-cases look like these:

Simple context:

>>> with NoInterrupt () :
pass # do something

Context with a cleanly aborted loop:

>>> with NoInterrupt () as interrupted:
done = False

while not interrupted and not done:

Do something
done = True

Map:

>>> NolInterrupt () .map(abs, [1, -1, 2, -21)
(1, 1, 2, 2]

10

Chapter 1. mmfutils

http://stackoverflow.com/questions/323972/is-there-any-way-to-kill-a-thread-in-python
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

MMFUtils Documentation, Release 0.5.4dev

Keyboard interrupt signals are suspended during the execution of the block unless forced by the user (3 rapid
interrupts within 1s). Interrupts are ignored by default unless ignore=False is specified, in which case they will
be raised when the context is ended.

If you want to control when you exit the block, use the interrupted flag. This could be used, for example, while
plotting frames in an animation (see doc/Animation.ipynb). Without the NoTnterrupt () context, if the user
sends a keyboard interrupt to the process while plotting, at best, a huge stack-trace is produced, and at worst,
the kernel will crash (randomly depending on where the interrupt was received). With this context, the interrupt
will change interrupted to True so you can exit the context when it is safe.

The last case is mapping a function to data. This will allow the user to interrupt the process between function
calls.

In the following examples we demonstrate this by simulating interrupts

>>> import os, signal, time
>>> def simulate_interrupt (force=False) :
0s.kill (os.getpid(), signal.SIGINT)
if force:
Simulated a forced interrupt with multiple signals
os.kill (os.getpid(), signal.SIGINT)
0s.kill (os.getpid (), signal.SIGINT)
time.sleep(0.1) # Wait so signal can be received predictably

This loop will get interrupted in the middle so that m and n will not be the same.

>>> def f(n, interrupted=False, force=False, interrupt=True) :
while n[0] < 10 and not interrupted:

n[0] += 1
if n[0] == 5 and interrupt:
simulate_interrupt (force=force)
nfl] += 1
>>> n = [0, 0]
>>> f(n, interrupt=False)
>>> n
[10, 10]
>>> n = [0, O]
>>> try: # All doctests need to be wrapped in try blocks to not kill py.test!
f(n)
except KeyboardInterrupt as err:
print ("KeyboardInterrupt: ".format (err))
KeyboardInterrupt:
>>> n
[5, 4]
Now we protect the loop from interrupts. >>> n = [0, 0] >>> try: ... with Nolnterrupt(ignore=False) as
interrupted: ... f(n) ... except KeyboardInterrupt as err: ... print(‘“KeyboardInterrupt: {}”.format(err))

KeyboardInterrupt: >>>n [10, 10]

One can ignore the exception if desired (this is the default as of 0.4.11): >>> n = [0, 0] >>> with Nolnterrupt()
as interrupted: ... f(n) >>>n [10, 10]

Three rapid exceptions will still force an interrupt when it occurs. This might occur at random places in
your code, so don’t do this unless you really need to stop the process. >>>n = [0, 0] >>> try: ... with
Nolnterrupt(ignore=False) as interrupted: ... f(n, force=True) ... except KeyboardInterrupt as err:
print(“KeyboardInterrupt: {}”.format(err)) KeyboardInterrupt: >>>n [5, 4]

1.3. mmfutils.contexts 11

MMFUtils Documentation, Release 0.5.4dev

If f{) is slow, we might want to interrupt it at safe times. This is what the interrupted flag is for:

>>> n = [0, 0]
>>> try:
with NoInterrupt (ignore=False) as interrupted:
f(n, interrupted)
except KeyboardInterrupt as err:

C. print ("KeyboardInterrupt: ".format (err))
KeyboardInterrupt:

>>> n

[5, 5]

Again: the exception can be ignored >>> n = [0, 0] >>> with Nolnterrupt() as interrupted
>>>n [5, 5]

__bool__ ()
Return True if interrupted.

_ _enter ()
Enter context.

__nonzero__ ()
Return True if interrupted.

force_ n = 3
force timeout =1

classmethod handle_original_signal (signum, frame)
Call the original handler.

classmethod handle_signal (signum, frame)
Custom signal handler.

. ... f(n, interrupted)

This stores the signal for later processing unless it was forced or there are no current contexts, in which

case the original handlers will be called.

classmethod is_registered()
Return True if handlers are registered.

map (function, sequence, *v, **kw)
Map function onto sequence until interrupted or done.

Interrupts will not occur inside function() unless forced.

classmethod register()
Register the handlers so that signals can be suspended.

classmethod reset ()
Reset the signal logs and return last signal (signum, frame, time).

classmethod resume (signals=None)
Resumes the specified signals.

classmethod set_signals (signals)
Change the signal handlers.

Note: This does not change the signals listed in _suspended_signals list.
Parameters signals (set ())— Set of signal numbers.

classmethod suspend (signals=None)
Suspends the specified signals.

12

Chapter 1. mmfutils

https://docs.python.org/3/library/stdtypes.html#set

MMFUtils Documentation, Release 0.5.4dev

classmethod unregister (full=False)
Reset handlers to the original values. No more signal suspension.

Parameters full (bool) - If True, do a full reset, including counts.

mmfutils.contexts.coroutine (coroutine)
Decorator for a context that yeilds an function from a coroutine.

This allows you to write functions that maintain state between calls. The use as a context here ensures that the
coroutine is closed.

Examples

Here is an example based on that suggested by Thomas Kluyver: http://takluyver.github.io/posts/
readable-python-coroutines.html

>>> (@coroutine
def get_have_seen (case_sensitive=False) :
seen = set () # Set of words already seen. This is the "state"
word = (yield)
while True:
if not case_sensitive:
word = word.lower ()

result = word in seen
seen.add (word)
word = (yield result)

>>> with get_have_seen (case_sensitive=False) as have_seen:
print (have_seen("hello"))
print (have_seen ("hello"))

((

print (have_seen ("Hello"))

print (have_seen ("hi"))
L. print (have_seen ("hi"))
False
True
True
False
True

>>> have_seen ("hi")
Traceback (most recent call last):

StopIteration

You can also use this as a function (like open()) but don’t forget to close it.

>>> have_seen = get_have_seen (case_sensitive=True)
>>> have_seen ("hello")

False

>>> have_seen ("hello")

True

>>> have_seen ("Hello")

False

>>> have_seen ("hi")

False

>>> have_seen ("hi")

True

>>> have_seen.close ()

>>> have_seen ("hi")

Traceback (most recent call last):

(continues on next page)

1.3. mmfutils.contexts 13

https://docs.python.org/3/library/functions.html#bool
http://takluyver.github.io/posts/readable-python-coroutines.html
http://takluyver.github.io/posts/readable-python-coroutines.html

MMFUtils Documentation, Release 0.5.4dev

(continued from previous page)

StopIteration

mmfutils.contexts.is_main thread()
Return True if this is the main thread.

mmfutils.contexts.nointerrupt (f)
Decorator that suspends signals and passes an interrupted flag to the protected function. Can only be called from
the main thread: will raise a RuntimeError otherwise (use @interrupted instead).

Examples

>>> @nointerrupt
def f (interrupted):
for n in range(3):
if interrupted:

break
print (n)
c. time.sleep(0.1)
>>> f()
0
1
2

1.4 mmfutils.debugging

Some debugging tools.
Most of these are implemented as decorators.

mmfutils.debugging.debug (*v, **kw)
Decorator to wrap a function and dump its local scope.

Parameters (or env) (locals) — Function’s local variables will be updated in this dict. Use
locals() if desired.

Examples

>>> env = {}
>>> @debug (env)
def f(x):
Yy = X*k*2
zZ = 2%y
.. return z
>>> £ (1)
2
>>> sorted(env.items ())
[('x', L), ('y', 1), ('z', 2)]

This will put the local variables directly in the global scope:

14 Chapter 1. mmfutils

MMFUtils Documentation, Release 0.5.4dev

>>> @debug(locals())
def f(x):
Yy = Xk*2
z = 2%y
. return z
>>> f (1)

>>> X, y, Z
(1, 1, 2)
>>> £(2)

8

>>> X, y, Z
(2, 4, 8)

If an exception is raised, you still have access to the results:

>>> env = {}
>>> @debug (env)
def f(x):

y = 2*x%

z = 2/y
. return z
>>> £ (0)
Traceback (most recent call last):

File "<doctest mmfutils.debugging.debug[14]>", line 1, in <module>

£(0)
File "<doctest mmfutils.debugging.debug[13]>", line 4, in f
z = 2/y

ZeroDivisionError: division by zero
>>> sorted(env.items ())
[z, 0), ('y'y 0)1]

class mmfutils.debugging.persistent_locals (func)
Bases: object

Decorator that stores the function’s local variables.

Examples

>>> (@persistent_locals
def f(x):
Yy = X*%2
z = 2%y
. return z
>>> £ (1)
2
>>> sorted(f.locals.items())
[¢'x', 1), ('yv'y 1), ('z', 2)1
>>> f.clear_locals()
>>> f.locals

{}

clear_locals ()

property locals

1.4. mmfutils.debugging 15

https://docs.python.org/3/library/functions.html#object

MMFUtils Documentation, Release 0.5.4dev

1.5 mmfutils.math

1.5.1 mmfutils.math.integrate

Integration Utilities.

mmfutils.math.integrate.Richardson (f, ps=None, [=2, n0=1)
Compute the Richardson extrapolation of f given the function

The extrapolants are stored in the array S°/n, s] where “S[n, 0] = f(nO*I**n) and S[n, s] is the s’th extrapolant.

Note: It is crucial for performance that the powers p_n be properly characterized. If you do not know the
form of the errors, then consider using a non-linear acceleration technique such as levin_sum ().

Parameters ps (iterable)— Iterable returning the powers p_n. To generate the sequence $p_0
+ m d_p$ for example, use itertools.count™ " (p0, dp) ().

Examples

Here we consider

N
2721 (N7

>>> def f(N): return sum(np.arange(l, N+1, dtype=float)*=*(-2))
>>> r = Richardson(f, 1=3, n0=2)

>>> for n in range(9):

C. x = next (r)

>>> err = abs(x - np.pi**2/6.0)

>>> assert err < le-14, 'err'

Now some other examples with different p values:

o 7t
27:*+ (N77)

>>> def f(N): return sum(np.arange(l, N+1, dtype=float)*=*(-4))

>>> r = Richardson(f, ps=itertools.count(3,1))
>>> for n in range (8):

x = next (r)
>>> err = abs(x - np.pi*x*4/90.0)

>>> assert err < le-14, 'err'

16 Chapter 1. mmfutils

MMFUtils Documentation, Release 0.5.4dev

>>> def £ (N): return sum(np.arange(l, N+1, dtype=float)*x(-6))
>>> r = Richardson (f, ps=itertools.count (5))
>>> for n in range(7):

c x = next (r)
>>> err = abs(x — np.pi**x6/945.0)
>>> assert err < le-14, 'err'

Richardson works with array valued functions:

>>> def f(N): return np.array([sum(np.arange(l, N+1, dtype=float)xx(-2))
C. sum(np.arange (1, N+1, dtype=float)xx(-4))
>>> r = Richardson(f, 1=3, n0=2)
>>> for n in range(7):

o~

)

c x = next (r)
>>> err = abs(x - np.array([np.pi**2/6.0, np.pi**x4/90.0])) .max ()
>>> assert err < le-13, 'err'

It also works for complex valued functions:

>>> def f (N): return (sum(np.arange(l, N+1, dtype=float) = (-2)) +

C. ljxsum(np.arange (1, N+1, dtype=float) =% (-4)))
>>> r = Richardson(f, 1=3, n0=2)

>>> for n in range(7):

R x = next (r)

>>> err = abs(x - (np.pi*+2/6.0 + 1j*np.pi* *4/90.0))

>>> assert err < le-13, 'err'

mmfutils.math.integrate.mquad(f, a, b, abs_tol=1e-12, verbosity=0, fa=None, fb=None,
save_fx=False, res_dict=None, max_fent=10000,
min_step_size=None, norm=<function <lambda>>,
points=None)
Return (res, err) where res is the numerically evaluated integral using adaptive Simpson quadrature.

mgquad tries to approximate the integral of function f from a to b to within an error of abs_tol using recursive
adaptive Simpson quadrature. mquad allows the function y = f(x) to be array-valued. In the matrix valued case,
the infinity norm of the matrix is used as it’s “absolute value”.

Parameters

* f (function) — Possibly array valued function to integrate. If this emits a NaN, then an
AssertionError is raised to allow the user to optimize this check away (as it exists in the core
of the loops)

* a(float) - Integration range (a, b)

* b (float) - Integration range (a, b)

* fa (float)—f(a) and f(b) respectively (if already computed)

* fb (float) - f(a) and f(b) respectively (if already computed)

* abs_tol (float)— Approximate absolute tolerance on integral

* verbosity (int)— Display info if greater than zero. Shows the values of [fcnt a b-a Q]
during the iteration.

e save_f£fx (bool) - If True, then save the abscissa and function values in res_dict.

* res_dict (dict) - Details are stored here. Pass a dictionary to access these. The dictio-
nary will be modified.

fent : Number of function evaluations. xy : List of pairs (X, f(x)) if save_fx is defined.

1.5. mmfutils.math 17

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

MMFUtils Documentation, Release 0.5.4dev

e max_fent (int) - Maximum number of function evaluations.
* min_step_size (float)— Minimum step size to limit recursion.

* norm (function)— Norm to use to determine convergence. The absolute error is deter-
mined as norm(f(x) - F).

* points ([float])— List of special points to be included in abscissa.

Notes

Based on “adaptsim” by Walter Gander. Ref: W. Gander and W. Gautschi, “Adaptive Quadrature Revisited”,
1998. http://www.inf.ethz.ch/personal/gander

Examples

Orthogonality of planewaves on [0, 2pi]

>>> def f(x):

v = np.exp(lj*np.array([[1.0, 2.0, 3.0]1)*x)
. return v.T.conj()*v/2.0/np.pi
>>> ans = mquad(f, 0, 2xnp.pi)

>>> abs(ans — np.eye(ans.shape[0])) .max() < _ABS_TOL
True

>>> res_dict = {}

>>> def f(x): return xx*+*2

>>> ans = mquad(f, -2, 1, res_dict=res_dict, save_fx=True)
>>> abs(ans - 3.0) < _ABS_TOL

True

>>> x = np.array ([xy[0] for xy in res_dict['xy']])

>>> y = np.array([xy[l] for xy in res_dict['xy']l])

>>> abs(y - f(x)).max()

0.0

This works, but triggers a warning because of the singular # endpoints. >>> logger = logging.getLogger()
>>> logger.disabled = True >>> def f(x): return 1.0/np.sqrt(x) + 1.0/np.sqrt(1.0-x) >>> abs(mquad(f, 0, 1,
abs_tol=1e-8) - 4.0) < 1e-8 True >>> logger.disabled = False

>>> def f(x):
if x < 0:
return 0.0
else:
c return 1.0
>>> abs (mquad(f, -2.0, 1.0) - 1.0) < 1le-10
True

>>> def f(x): return 1./x
>>> mquad(f, 1, np.inf)
Traceback (most recent call last):

ValueError: Infinite endpoints not supported.

mmfutils.math.integrate.quad (f, a, b, epsabs=1e-12, epsrel=1e-08, limit=1000, points=None,
**kwargs)
An improved version of integrate.quad that does some argument checking and deals with points properly.

18 Chapter 1. mmfutils

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://www.inf.ethz.ch/personal/gander

MMFUtils Documentation, Release 0.5.4dev

Return (ans, err).

Examples

>>> def f(x): return 1./x*+*2

>>> (ans, err) = quad(f, 1, np.inf, points=[])

>>> abs(ans - 1.0) < err

True

>>> (ans, err) = quad(f, 1, np.inf, points=[3.0, 2.0])
>>> abs(ans - 1.0) < err

True

mmfutils.math.integrate.rsum(f, NO=0, ps=None, [=2, abs_tol=le-12, rel _tol=1e-08, ver-
bosity=0)
Sum f using Richardson extrapolation.

Examples

>>> def f(n):
return 1./ (n+1l)**2

>>> res, err = rsum(f)

>>> res

1.6449340668...

>>> abs(res - np.pi**2/6.0) < err
True

1.5.2 mmfutils.math.differentiate

Differentiation.

mmfutils.math.differentiate.differentiate (f, x=0.0, d=1, h0=1.0, I=1.4, nmax=10, dir=0,

p0=1, err=[0])
Evaluate the numerical dth derivative of f(x) using a Richardson extrapolation of the finite difference formula.

Parameters
* £ (function) - The function to compute the derivative of.

* x({float, array})- The derivative is computed at this point (or at these points if the
function is vectorized.

* d(int, optional) - Order of derivative to compute. d=0 is the function f{x), d=1 is
the first derivative etc.

* h0(float, optional)- Initial stepsize. Should be on about a factor of 10 smaller than
the typical scale over which f{x) varies significantly.

* 1(float, optional)- Richardson extrapolation factor. Stepsizes used are h0/[**n
* nmax (int, optional)-— Maximum number of extrapolation steps to take.

e dir (int, optional) — If dir < 0, then the function is only evaluated to the left, if
positive, then only to the right, and if zero, then centered form is used.

Returns df — Order d derivative of f at x.

Return type {float, array}

1.5. mmfutils.math 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

MMFUtils Documentation, Release 0.5.4dev

Other Parameters

* p0 (int, optional) — This is the first non-zero term in the taylor expansion of either the
difference formula. If you know that the first term is zero (because of the coefficient), then
you should set p0=2 to skip that term.

Note: This is not the power of the term, but the order. For centered difference formu-
lae, pO=1 is the h**2 term, which would vanish if third derivative vanished at x while for
the forward difference formulae this is the /& term which is absent if the second derivative
vanishes.

¢ err[0] (float) — This is mutated to provide an error estimate.

Notes

This implementation uses the Richardson extrapolation to extrapolate the answer. This is based on the following
Taylor series error formulae:

fle+h) = f=) ")

flay = TN ZI@) G T
_ fla+h)— flz—h) f”
2h 7h2§+”
T ETEEN RN
= W2

If we let $h = 1/N$ then these formula match the expected error model for the Richardson extrapolation
S(h) = S(0) + ah? + (hP*1)

with $p=18$ for the one-sided formulae and $p=2$ for the centered difference formula respectively.

See mmf .math.integrate.Richardson

See also:

mmfutils.math.integrate.Richardson () Richardson extrapolation

Examples

>>> from math import sin, cos

>>> x = 100.0

>>> assert (abs (differentiate(sin, x, d=0)-sin(x))<le-15)
>>> assert (abs(differentiate(sin, x, d=1)-cos(x))<le-14)
>>> assert (abs (differentiate(sin, x, d=2)+sin(x))<le-13)
>>> assert (abs (differentiate(sin, x, d=3)+)))
>>> assert (abs(differentiate(sin, x, d=4)-))

>>> differentiate(abs, 0.0, d=1, dir=1

1.0

>>> differentiate(abs, 0.0, d=1, dir=-1)

-1.0

>>> differentiate(abs, 0.0, d=1, dir=0)

0.0

cos (x))<le-11
sin(x))<le-9)

20 Chapter 1. mmfutils

MMFUtils Documentation, Release 0.5.4dev

Note that the Richardson extrapolation assumes that /0 is small enough that the truncation errors are controlled
by the taylor series and that the taylor series properly describes the behaviour of the error. For example, the
following will not converge well, even though the derivative is well defined:

>>> def f(x):

.. return np.sign(x)~abs (x)*%(1.5)

>>> df = differentiate(f, 0.0)

>>> abs(df) < 0.1

True

>>> abs(df) < 0.01

False

>>> abs (differentiate(f, 0.0, nmax=100)) < 3e-8
True

Sometimes, one may compensate by increasing nmax. (One could in principle change the Richardson parameter
p, but this is optimized for analytic functions.)

The differentiate () also works over arrays if the function f is vectorized:

>>> x = np.linspace (0, 100, 10)
>>> assert (max (abs (differentiate (np.sin, x, d=1) - np.cos(x))) < 3e-15)

mmfutils.math.differentiate.hessian (f, x, **kw)
Return the gradient Hessian matrix of f{x) at x using di fferentiate (). This is not efficient.

Parameters
* £ (function) - Scalar function of an array.
* x (array-1ike)— Derivatives evaluated at this point.

* kw(dict)—See differentiate () for options.

Examples
>>> def f(x): return np.arctan2 (+x)
>>> def df (x): return np.array([x[1], -x[0]])/np.sum(x**2)
>>> def ddf (x):
return np.array ([[-2.xx[0]*x[1], -np.diff(x*x%2)[0]1],
c [-np.diff (x+%2) [0], 2.%xx[0]*x[1]]])/np.sum(x**2) **2
>>> = [0.1, 0.2]

X
>>> D, H = hessian(f, x, h0=0.1)

>>> x= np.asarray (x)
>>> D, df (x)
(array ([4., -2.]1), array ([4., —-2.1))

>>> H, ddf (x)
(array ([[-16., -12.

o~
~

]

[-12., 16.]

array ([[-16., -12.],
[-12., 16.11))

1.5. mmfutils.math 21

https://docs.python.org/3/library/stdtypes.html#dict

MMFUtils Documentation, Release 0.5.4dev

1.5.3 mmfutils.math.bases
mmfutils.math.bases.interfaces
mmfutils.math.bases.bases
mmfutils.math.bases.utils
1.5.4 mmfutils.math.bessel
1.5.5 mmfutils.math.linalg

Linear Algebra Routines

mmfutils.math.linalg.block_diag (arrays)
Create a new diagonal matrix from the provided arrays.

Parameters
* a (ndarray) — Input arrays.
* b (ndarray) - Input arrays.
* ¢ (ndarray) - Input arrays.

* .. (ndarray) - Input arrays.

Returns D — Array with a, b, c, ... on the diagonal.

Return type ndarray

Examples
1.5.6 mmfutils.math.special

1.5.7 mmfutils.math.wigner

Wigner Ville distribution.

This module contains some FFT-based routines for computing the Wigner-Ville distribution.

mmfutils.math.wigner.wigner_ ville (psi, dt=1, make_analytic=False, skip=1, pad=True)

Return (ws, P) where P is the Wigner Ville quasi-distribution for psi.

Assumes that psi is periodic. Note: the frequencies at which P is valid are half the frequencies normally
associated with the wavefunction. Thus we also return the associated frequencies to avoid possible confusion.

Parameters

* psi (array-1like)— The input signal.
* dt (float) — Step size for the input abscissa.

* make_analytic (bool)—If True, then negative frequency components are set to zero.

* skip (int)— Downsample the time-domain by skipping this many points.

* pad (bool)—If True, then pad the input array to remove aliasing artifacts.

22

Chapter 1. mmfutils

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

MMFUtils Documentation, Release 0.5.4dev

1.6 mmfutils.optimize

Optimization tools.

mmfutils.optimize.bracket_monotonic (f, x0=0.0, xI=1.0, factor=2.0)
Return (x0, x1) where f{x0)*f(xI) < 0.

Assumes that f is monotonic and that the root exists.

Proceeds by increasing the size of the interval by factor in the direction of the root until the root is found.

Examples

>>> import math

>>> bracket_monotonic(lambda x:10 - math.exp (x))

(0.0, 3.0)

>>> bracket_monotonic(lambda x:10 - math.exp(-x), factor=1.5)
(4.75, -10.875)

mmfutils.optimize.ubrentq (f, a, b, *v, **kw)
Version of scipy.optimize.brentq with uncertainty processing using the uncertainties package.

mmfutils.optimize.usolve (f, a, *v, **kw)
Return the root of f{x) = 0 with uncertainties propagated.

Parameters

e £ (function) — Function to find root of f{x) = 0. Note: this must work with only a
single argument even if the solver supports args etc. Thus, use lambda x: f(x, ...) or
functools.partial if needed.

* solver (function)— Solver function (default is scipy.optimize.brentq).
* v — Remaining arguments will be passed as solver(f, a, *v, **kw).

* kw — Remaining arguments will be passed as solver(f, a, *v, **kw).

1.7 mmfutils.performance

1.7.1 mmfutils.performance.blas

1.7.2 mmfutils.performance.fft

FFTW wrappers for high-performance computing.

This module requires you to have installed the fftw libraries and py f ftw. Note that you must build the fftw with all
precisions using something like:

PREFIX=/data/apps/fftw
VER=3.3.4
for opt in " " "--enable-sse2 --enable-single" \
"——enable-long-double" "--enable-quad-precision"; do
./configure —--prefix="${PREFIX}/S${VER}"\
——enable-threads\
-—enable-shared\
Sopt

(continues on next page)

1.6. mmfutils.optimize 23

MMFUtils Documentation, Release 0.5.4dev

(continued from previous page)

make —-7j8 install

done

Note: The FFTW library does not work with negative indices for axis. Indices should first be normalized by inds %
len (shape).

mmfutils.performance.fft.££t (Phi, axis=-1)

mmfutils.performance.fft.fftfreq(n,d=1.0)
Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero
at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = 1[0, 1, ..., n/2-1, -n/2, ..., =11 / (dxn) if n is even
£=1(0, 1, ..., (n-1)/2, -(n-1)/2, ..., -11 / (d*n) if n is odd
Parameters
* n (int)— Window length.
* d(scalar, optional)- Sample spacing (inverse of the sampling rate). Defaults to 1.
Returns f— Array of length n containing the sample frequencies.
Return type ndarray
Examples
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft (signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreqg(n, d=timestep)
>>> freq
array ([0. , 1.25, 2.5, ..., =-3.75, -2.5 , -1.25])

mmfutils.performance. fft.££ftn (Phi, axes=None)

mmfutils.performance.fft.if£ft (Phit, axis=- 1)

mmfutils.performance.fft.ifftn (Phit, axes=None)

mmfutils.performance.fft.resample (f, N)
Resample f to a new grid of size N.

This uses the FFT to resample the function f on a new grid with N points. Note: this assumes that the function f
is periodic. Resampling non-periodic functions to finer lattices may introduce aliasing artifacts.

Parameters
* f (array) - The function to be resampled. May be n-dimensional

* N(int or array)- The number of lattice points in the new array. If this is an integer,
then all dimensions of the output array will have this length.

24

Chapter 1. mmfutils

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

MMFUtils Documentation, Release 0.5.4dev

Examples

>>> def f(x, vy):
"Function with only low fregquencies"
ce return (np.sin(2+np.pi*x)-np.cos (4*np.pi*y))
>> 1, = 1.0
>>> Nx, Ny = 16, 13 # Small grid
>>> NX, NY = 31, 24 # Large grid
>>> dx, dy = L/Nx, L/Ny
>>> dxX, dY = L/NX, L/NY

>>> x (np.arange (Nx) *dx — L/2)[:, None]

>>> y = (np.arange (Ny)+dy - L/2) [None, :]

>>> X = (np.arange (NX)*dX - L/2)[:, None]

>>> Y = (np.arange (NY)+dY - L/2) [None, :]

>>> f XY = resample(f(x,y), (NX, NY))

>>> np.allclose (f_XY, f£(X,Y)) # To larger grid
True

>>> np.allclose (resample (f_XY, (Nx, Ny)), f£(x,v)) # Back down

True

1.7.3 mmfutils.performance.numexpr

Tools for working with Numexp.

At present all this module provides is a safe way of importing numexpr. This prevents a hard crash (i.e. segfault)
when the MKL is enabled but cannot be found. Just go:

>>> from mmfutils.performance.numexpr import numexpr

1.7.4 mmfutils.performance.threads

Thread Control

This module provides control of the number of threads used by the MKL and numexpr. It uses the global set
SET_THREAD_HOOKS which should contain functions that take a single argument and set the number of threads
for that particular part of the system.

Use set_num_threads(nthreads) to call all of these hooks.

mmfutils.performance.threads.set_num threads (nthreads)
Set the maximum number of threads to use.

Calls all the hooks in mmfutils.performance.threads.SET_THREAD_HOOKS
Tools for high-performance computing.

This module may rely on many other packages that are not easy to install such as pyfftw and the corresponding fftw
implementation.

1.7. mmfutils.performance 25

MMFUtils Documentation, Release 0.5.4dev

1.8 mmfutils.plot

1.8.1 mmfutils.plot.animation
1.8.2 mmfutils.plot.cmaps
1.8.3 mmfutils.plot.colors
1.8.4 mmfutils.plot.contour
1.8.5 mmfutils.plot.errors
1.8.6 mmfutils.plot.publish

1.8.7 mmfutils.plot.rasterize

1.9 mmfutils.parallel

1.10 mmfutils.solve

1.10.1 Submodules
mmfutils.solve.broyden

1.10.2 Module contents

1.11 mmfutils.testing

Testing utilities.

mmfutils.testing.allclose (a, b, use_covariance=False, **kw)
Return True if a and be are close.

Like np.allclose, but first tries a strict equality test, and also works for quantities with uncertainties.

Parameters use_covariance (bool, float) — If True and parameters have uncertainties,
then use their covariance information. Two parameters are considered equal in this case if their
difference is zero to within the factor use_covariance times the std_dev of the difference. (If
use_covariance is True, this is 1 standard deviation, but floats can be used.)

26 Chapter 1. mmfutils

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

CHAPTER
TWO

MMF UTILS

Small set of utilities: containers and interfaces.

This package provides some utilities that I tend to rely on during development. Presently it includes some convenience
containers, plotting tools, and a patch for including zope.interface documentation in a notebook.

(Note: If this file does not render properly, try viewing it through nbviewer.org)
Documentation: http://mmfutils.readthedocs.org

Source: * https://alum.mit.edu/www/mforbes/hg/forbes-group/mmfutils: Permalink (will forward). * https://hg.
iscimath.org/forbes-group/mmfutils: Current, in case the permalink fails. * https://github.com/forbes-group/mmfutils:
Public read-only mirror.

Issues: https://alum.mit.edu/www/mforbes/hg/forbes- group/mmfutils/issues
Build Status:

Table of Contents

1 MMF Utils

1.1 Installing

2 Usage

2.1 Containers

2.1.1 ObjectBase and Object
2.1.1.1 Object Example

2.1.2 Container

2.1.2.1 Container Examples
2.2 Contexts

2.3 Interfaces

2.3.1 Interface Documentation
2.4 Parallel

2.5 Performance

2.6 Plotting

2.6.1 Fast Filled Contour Plots
2.7 Angular Variables

2.8 Debugging

27

http://docs.zope.org/zope.interface/
http://nbviewer.ipython.org/urls/bitbucket.org/mforbes/mmfutils-fork/raw/tip/doc/README.ipynb
http://mmfutils.readthedocs.org
https://alum.mit.edu/www/mforbes/hg/forbes-group/mmfutils
https://hg.iscimath.org/forbes-group/mmfutils
https://hg.iscimath.org/forbes-group/mmfutils
https://github.com/forbes-group/mmfutils
https://alum.mit.edu/www/mforbes/hg/forbes-group/mmfutils/issues
https://cloud.drone.io/forbes-group/mmfutils

MMFUtils Documentation, Release 0.5.4dev

2.9 Mathematics
3 Developer Instructions
3.1 Releases

4 Change Log
4.1 REL: 0.5.4
4.2 REL: 0.5.3
4.3 REL: 0.5.1
4.4 REL: 0.5.0
4.5 REL: 0.4.13
4.6 REL: 0.4.10
4.7 REL: 0.4.9
4.8 REL: 0.4.7

2.1 Installing

This package can be installed from PyPI:

’pythonB -m pip install mmfutils

or, if you need to install from source, you can get it from one of the repositories:

python3 -m pip install hg+https://alum.mit.edu/www/mforbes/hg/forbes-group/mmfutils
python3 -m pip install git+https://github.com/forbes—group/mmfutils

28 Chapter 2. MMF Utils

https://pypi.org/project/mmfutils/

CHAPTER
THREE

USAGE

3.1 Containers

3.1.1 ObjectBase and Object

The ObjectBase and Object classes provide some useful features described below. Consider a problem where
a class is defined through a few parameters, but requires extensive initialization before it can be properly used. An
example is a numerical simulation where one passes the number of grid points N and a length L, but the initialization
must generate large grids for efficient use later on. These grids should be generated before computations begin, but
should not be re-generated every time needed. They also should not be pickled when saved to disk.

Deferred initialization via the ““init()"” method: The idea here changes the semantics of __init__ () slightly
by deferring any expensive initialization to init (). Under this scheme, __init__ () should only set and check
what we call picklable attributes: these are parameters that define the object (they will be pickled in Ob ject below)
and will be stored in a list self.picklable_attributes which is computed at the end of ObjectBase.
__init__ () asthelist of all keysin __dict__. Then, ObjectBase.__init__ () willcall init () where
all remaining attributes should be calculated.

This allows users to change various attributes, then reinitialize the object once with an explicit call to init () before
performing expensive computations. This is an alternative to providing complete properties (getters and setters) for
objects that need to trigger computation. The use of setters is safer, but requires more work on the side of the developer
and can lead to complex code when different properties depend on each other. The approach here puts all computations
in a single place. Of course, the user must remember to call init () before working with the object.

To facilitate this, we provide a mild check in the form of an initialized flag thatis set to True at the end of the
base init () chain, and set to False if any variables are in pickleable_attributes are set.

Serialization and Deferred Initialization: The base class ObjectBase does not provide any pickling services
but does provide a nice representation. Additional functionality is provided by Object which uses the features of
ObjectBase to define __getstate__ () and __setstate__ () methods for pickling which pickle only the
picklable_attributes. Note: unpickling an object will not call __init__ () but will call init () giving
objects a chance to restore the computed attributes from pickles.

* Note: Before using, consider if these features are really needed — with all such added functionality comes
additional potential failure modes from side-interactions. The “*ObjectBase™" class is quite simple, and therefore
quite safe, while “*Object™" adds additional functionality with potential side-effects. For example, a side-effect of
support for pickles is that ““copy.copy()"" will also invoke “‘init()"" when copying might instead be much faster.
Thus, we recommend only using “*ObjectBase™" for efficient code.

29

MMFUtils Documentation, Release 0.5.4dev

Object Example

ROOTDIR = 'hg root
ROOTDIR = ROOTDIRI[O0]
import sys;sys.path.insert (0, ROOTDIR)

import numpy as np
from mmfutils.containers import ObjectBase, ObjectMixin

class State (ObjectBase) :
_quiet = False
def _ init_ (self, N, L=1.0, xx*kw):
"""Set all of the picklable parameters, in this case, N and L."""
self.N = N
self.L = L

Now register these and call init ()

super () .__init___ (xxkw)
if not self._qguiet:
print ("__init__ () called")

def init (self):
"""All additional initializations"""
if not self._quiet:
print ("init () called")
dx = self.L / self.N
self.x = np.arange (self.N, dtype=float) * dx - self.L/2.0
self.k = 2+np.pi » np.fft.fftfreq(self.N, dx)

Set highest momentum to zero if N is even to

avoid rapid oscillations

if self.N &% 2 == 0:
self.k[self.N//2] = 0.0

Calls base class which sets self.initialized
super () .init ()

def compute_derivative(self, f):
"""Return the derivative of f£."""
return np.fft.ifft(self.kxljxnp.fft.fft(£f)) .real

s = State(256)
print (s) # No default value for L

init () called
init () called
State (L=1.0, N=256)

s.L = 2.0
print (s)

State (L=2.0, N=256)

One feature is that a nice repr () of the object is produced. Now let’s do a calculation:

30 Chapter 3. Usage

MMFUtils Documentation, Release 0.5.4dev

f = np.exp(3*np.cos (2*xnp.pi*s.x/s.L)) / 15
df = -2.*np.pi/5.*np.exp (3*np.cos (2+«np.pi*s.x/s.L))*np.sin(2+«np.pi*s.x/s.L)/s.L
np.allclose(s.compute_derivative (f), df)

False

Oops! We forgot to reinitialize the object... (The formula is correct, but the lattice is no longer commensurate so the
FFT derivative has huge errors).

print (s.initialized)

s.init ()

assert s.initialized

f = np.exp(3xnp.cos (2*«np.pixs.x/s.L)) / 15

df = -2.xnp.pi/5.*np.exp (3*xnp.cos (2+«np.pi*s.x/s.L))*np.sin(2+«np.pixs.x/s.L)/s.L
np.allclose(s.compute_derivative (f), df)

False
init () called

True

Here we demonstrate pickling. Note that using Ob ject makes the pickles very small, and when unpickled, init ()
is called to re-establish s . x and s . k. Generally one would inherit from Ob ject, but since we already have a class,
we can provide pickling functionality with Ob jectMixin:

class Statel (ObjectMixin, State):
pass

s = State (N=256, _qguiet=True)
sl = Statel (N=256, _quiet=True)

import pickle, copy

s_repr = pickle.dumps (s)

sl_repr = pickle.dumps(sl)

print (f"ObjectBase pickle: {len(s_repr)} bytes")
print (f"ObjectMixin pickle: {len(sl_repr)} bytes")

ObjectBase pickle: 4396 bytes
ObjectMixin pickle: 103 bytes

Note, however, that the speed of copying is significantly impacted:

$timeit copy.copy(s)
%$timeit copy.copy(sl)

2.58 ps £ 34.3 ns per loop (mean £ std. dev. of 7 runs, 100000 loops each)
27.1 pus £ 404 ns per loop (mean *+ std. dev. of 7 runs, 10000 loops each)

Another use case applies when init () is expensive. If z and k were computed in __init__ (), then using
properties to change both NV and L would trigger two updates. Here we do the updates, then call init (). Good
practice is to call init () automatically before any serious calculation to ensure that the object is brought up to date
before the computation.

3.1. Containers 31

MMFUtils Documentation, Release 0.5.4dev

s.N = 64
s.L = 2.0
s.init ()

Finally, we demonstrate that Ob ject instances can be archived using the persist package:

import persist.archive
a = persist.archive.Archive (check_on_insert=True)
a.insert (s=s)

d = {}
exec (str(a), d)

d['s']

State (L=2.0, N=64, _quiet=True)

3.1.2 Container

The Container objectis a slight extension of Ob ject that provides a simple container for storing data with attribute
and iterative access. These implement some of the Collections Abstract Base Classes from the python standard library.
The following containers are provided:

* Container: Bare-bones container extending the Sized, Iterable, and Container abstract ase classes
(ABCs) from the standard containers library.

* ContainerList: Extension that acts like a tuple/list satisfying the Sequence ABC from the containers
library (but not the MutableSequence ABC. Although we allow setting and deleting items, we do not pro-
vide a way for insertion, which breaks this interface.)

* ContainerDict: Extension that acts like a dict satisfying the MutableMapping ABC from the
containers library.

These were designed with the following use cases in mind:

* Returning data from a function associating names with each data. The resulting ContainerList will act
like a tuple, but will support attribute access. Note that the order will be lexicographic. One could use a
dictionary, but attribute access with tab completion is much nicer in an interactive session. The containers.
nametuple generator could also be used, but this is somewhat more complicated (though might be faster).
Also, named tuples are immutable - here we provide a mutable object that is picklable etc. The choice between
ContainerList and ContainerDict will depend on subsequent usage. Containers can be converted from
one type to another.

Container Examples

from mmfutils.containers import Container

c = Container (a=1l, c=2, b='Hi there')
print (c)
print (tuple(c))

Container (a=1, b='Hi there', c=2)
(1, 'Hi there', 2)

32 Chapter 3. Usage

https://docs.python.org/2/library/collections.html#collections-abstract-base-classes

MMFUtils Documentation, Release 0.5.4dev

Attributes are mutable
c.b = "Ho there'
print (c)

Container (a=1, b='Ho there', c=2)

Other attributes can be used for temporary storage but will not be pickled.
import numpy as np

c.large_temporary_array = np.ones|((256,256))
print (c)
print (c.large_temporary_array)

Container (a=1, b='Ho there', c=2)

[f(r. 1. 1. ... 1. 1. 1.]
(r. 1. 1. ... 1. 1. 1.]
[1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1o 10 1]
[1. 1. 1. 1.1]
[1. 1. 1 1. 1. 1.]]

import pickle

cl = pickle.loads (pickle.dumps (c))
print (cl)

cl.large_temporary_array

Container (a=1, b='Ho there', c=2)

AttributeError Traceback (most recent call last)

<ipython-input-13-bd53d5116502> in <module>
2 cl = pickle.loads (pickle.dumps (c))
3 print(cl)

—-——=> 4 cl.large_temporary_array

AttributeError: 'Container' object has no attribute 'large_temporary_array'

3.2 Contexts

The mmfutils.contexts module provides two useful contexts:

NoInterrupt: This can be used to susspend KeyboardInterrupt exceptions until they can be dealt with at a
point that is convenient. A typical use is when performing a series of calculations in a loop. By placing the loop in a
NoInterrupt context, one can avoid an interrupt from ruining a calculation:

from mmfutils.contexts import NoInterrupt

complete = False

(continues on next page)

3.2. Contexts 33

MMFUtils Documentation, Release 0.5.4dev

(continued from previous page)

n=20
with NoInterrupt () as interrupted:
while not complete and not interrupted:
n += 1
if n > 10:
complete = True

Note: One can nest NoInterrupt contexts so that outer loops are also interrupted. Another use-case is mapping.
See doc/Animation.ipynb for more examples.

res = NolInterrupt () .map(abs, range(-100, 100))
np.sign(res)

array ([

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

el e e e e
~
el el el e e e
~
e e e e e e
~
e e e
~
e e e
~
e e e e
~
L T S R S SR SR S R
~
e e e
<
e e e
~
e e e e
~
R T S S SR SR S
~
il e
e e
~
e e e e
~
R T T = W SR SR S
~
il e e
e e
~
e e e e
~
L T R e S e e e
~
e e
e e e
~
e e e e
~

o~

3.3 Interfaces

The interfaces module collects some useful zope.interface tools for checking interface requirements. Interfaces provide
a convenient way of communicating to a programmer what needs to be done to used your code. This can then be
checked in tests.

from mmfutils.interface import Interface, Attribute, verifyClass, verifyObject,
—implementer

class IAdder (Interface):
"""Interface for objects that support addition.™""

value = Attribute('value', "Current value of object")
No self here since this is the "user" interface

def add(other) :
"""Return self + other."""

Here is a broken implementation. We muck up the arguments to add:

@implementer (IAdder)
class AdderBroken (object) :
def add(self, one, another):
There should only be one argument!
return one + another

try:
verifyClass (IAdder, AdderBroken)
except Exception as e:
print ("{0.__class__.__name__}: {0}".format (e))

34 Chapter 3. Usage

Animation.ipynb
http://docs.zope.org/zope.interface/

MMFUtils Documentation, Release 0.5.4dev

BrokenMethodImplementation: The object <class '__main__ .AdderBroken'> has failed to,
—implement interface __main__ .IAdder: The contract of _ _main__.IAdder.add(other) is_
—violated because 'AdderBroken.add(self, one, another)' requires too many arguments.

Now we get add right, but forget to define value. This is only caught when we have an object since the attribute is
supposed to be definedin __init__ ():

@implementer (IAdder)
class AdderBroken (object) :
def add(self, other):
return one + other

The class validates...
verifyClass (IAdder, AdderBroken)

... but objects are missing the value Attribute
try:

verifyObject (IAdder, AdderBroken())
except Exception as e:

print ("{0.__class__.__name__}: {0}".format (e))

BrokenImplementation: The object <__main__ .AdderBroken object at 0x11693cac0> has,,
—~failed to implement interface __main__ .IAdder: The _ _main__ .IAdder.value attribute
—was not provided.

Finally, a working instance:

@implementer (IAdder)
class Adder (object) :
def _ _init_ (self, wvalue=0):
self.value = value
def add(self, other):
return one + other

verifyClass (IAdder, Adder) and verifyObject (IAdder, Adder())

True

3.3.1 Interface Documentation

We also monkeypatch zope . interface.documentation.asStructuredText () to provide a mechanism
for documentating interfaces in a notebook.

from mmfutils.interface import describe_interface
describe_interface (IAdder)

3.3. Interfaces 35

MMFUtils Documentation, Release 0.5.4dev

3.4 Parallel

The mmfutils.parallel module provides some tools for launching and connecting to IPython clusters. The
parallel.Cluster class represents and controls a cluster. The cluster is specified by the profile name, and can
be started or stopped from this class:

import logging

logger = logging.getLogger ()

logger.setlLevel (logging.INFO)

import numpy as np

from mmfutils import parallel

cluster = parallel.Cluster (profile='default', n=3, sleep_time=1.0)
cluster.start ()

cluster.wait () # Instance of IPython.parallel.Client
view = cluster.load_balanced_view

X = np.linspace (-6, 6, 100)

y = view.map (lambda x:x**2, X)

print (np.allclose(y, xx%x2))

cluster.stop ()

Waiting for connection file: ~/.ipython/profile_default/security/ipcontroller-client.
—Jjson

INFO:root:Starting cluster: ipcluster start —--daemonize --quiet —--profile=default —-—
—n=3

Waiting for connection file: ~/.ipython/profile_default/security/ipcontroller-client.
—Jjson

INFO:root:waiting for 3 engines

INFO:root:0 of 3 running

INFO:root:3 of 3 running

INFO:root:Stopping cluster: ipcluster stop ——profile=default

True
Waiting for connection file: ~/.ipython/profile_default/security/ipcontroller-client.
—Jjson

If you only need a cluster for a single task, it can be managed with a context. Be sure to wait for the result to be
computed before exiting the context and shutting down the cluster!

with parallel.Cluster (profile='default', n=3, sleep_time=1.0) as client:

view = client.load_balanced_view

x = np.linspace (-6, 6, 100)

y = view.map (lambda x:x**2, x, block=True) # Make sure to wait for the result!
print (np.allclose(y, xxx2))

Waiting for connection file: ~/.ipython/profile_default/security/ipcontroller-client.
—Jjson

INFO:root:Starting cluster: ipcluster start —--daemonize --quiet —--profile=default —-—
—n=3

36 Chapter 3. Usage

MMFUtils Documentation, Release 0.5.4dev

Waiting for connection file: ~/.ipython/profile_default/security/ipcontroller-client.
—Jjson

INFO:root:waiting for 3 engines

INFO:root:0 of 3 running

INFO:root:3 of 3 running

INFO:root:Stopping cluster: ipcluster stop ——-profile=default

Waiting for connection file: ~/.ipython/profile_default/security/ipcontroller-client.
—Jjson
True

If you just need to connect to a running cluster, you can use parallel.get_client ().

3.5 Performance

The mmfutils.performance module provides some tools for high performance computing. Note: this module
requires some additional packages including numexp, pyfftw, and the mk 1 package installed by anaconda. Some of
these require building system libraries (i.e. the FFTW). However, the various components will not be imported by
default.

Here is a brief description of the components:

e mmfutils.performance.blas: Provides an interface to a few of the scipy BLAS wrappers. Very incom-
plete (only things I currently need).

e mmfutils.performance.fft: Provides an interface to the FFTW using py f ftw if it is available. Also
enables the planning cache and setting threads so you can better control your performance.

e mmfutils.performance.numexpr: Robustly imports numexpr and disabling the VML. (If you don’t do
this carefully, it will crash your program so fast you won’t even get a traceback.)

e mmfutils.performance.threads: Provides some hooks for setting the maximum number of threads in
a bunch of places including the MKL, numexpr, and fftw.

3.6 Plotting

Several tools are provided in mmfutils.plot:

3.6.1 Fast Filled Contour Plots

mmfutils.plot.imcontourf is similar to matplotlib’s plt.contourf function, but uses plt.imshow
which is much faster. This is useful for animations and interactive work. It also supports my idea of saner array-
shape processing (i.e. if x and y have different shapes, then it will match these to the shape of z). Matplotlib now
provies plt . pcolourmesh which is similar, but has the same interface issues.

$matplotlib inline

from matplotlib import pyplot as plt
import time

import numpy as np

from mmfutils import plot as mmfplt

X = np.linspace (-1, 1, 100)[:, None]xx3

(continues on next page)

3.5. Performance 37

https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide
http://hgomersall.github.io/pyFFTW/
http://www.fftw.org
http://www.fftw.org

MMFUtils Documentation, Release 0.5.4dev

(continued from previous page)

y = np.linspace(-0.1, 0.1, 200) [None, :]x%3

z = np.sin (10*x) xy*x*x2

plt.figure(figsize=(12,3))

plt.subplot (141)

%$time mmfplt.imcontourf(x, y, 2z, cmap='gist_heat')

plt.subplot (142)

%$time plt.contourf(x.ravel(), y.ravel(), z.T, 50, cmap='gist_heat')
plt.subplot (143)

%$time plt.pcolor(x.ravel(), y.ravel(), z.T, cmap='gist_heat', shading='auto')
plt.subplot (144)

%$time plt.pcolormesh(x.ravel(), y.ravel(), z.T, cmap='gist_heat', shading='auto')

CPU times: user 9.48 ms, sys: 3.72 ms, total: 13.2 ms
Wall time: 16.5 ms

CPU times: user 38.2 ms, sys: 2.97 ms, total: 41.2 ms
Wall time: 45 ms

CPU times: user 126 ms, sys: 5.86 ms, total: 132 ms
Wall time: 133 ms

CPU times: user 4.43 ms, sys: 209 ps, total: 4.64 ms
Wall time: 4.65 ms

<matplotlib.collections.QuadMesh at 0x124ec2130>

0.0010 010 010
0.0005 005
0.0000 000

—0.0005

—-0.0010

-1.0

3.7 Angular Variables

A couple of tools are provided to visualize angular fields, such as the phase of a complex wavefunction.

$matplotlib inline

from matplotlib import pyplot as plt
import time

import numpy as np

from mmfutils import plot as mmfplt

x = np.linspace (-1, 1, 100)[:, None]
y np.linspace (-1, 1, 200) [None, :]
z = x + 1lj*y

plt.figure(figsize=(9,2))

ax = plt.subplot (131)

mmfplt.phase_contour (x, vy, 2z, colors='k', linewidths=0.5)
ax.set_aspect (1)

(continues on next page)

38 Chapter 3. Usage

MMFUtils Documentation, Release 0.5.4dev

(continued from previous page)

This is a little slow but allows you to vary the luminosity.
ax = plt.subplot (132)

mmfplt.imcontourf (x, y, mmfplt.colors.color_complex(z))
mmfplt.phase_contour(x, y, z, linewidths=0.5)

ax.set_aspect (1)

This is faster if you just want to show the phase and allows
for a colorbar via a registered colormap

ax = plt.subplot (133)

mmfplt.imcontourf(x, y, np.angle(z), cmap='huslp')
ax.set_aspect (1)

plt.colorbar()

mmfplt.phase_contour(x, y, 2z, linewidths=0.5);

10 . 10 10
"TT77
0.5 Hﬁ“l\\ll | #'/ 0.5 0.5 :
0.0 - 0.0 0.0 0
—05 - -0.5 - -0.5 - 5
-1.0 -1.0 - -1.0
-1 0 1 -1 1 -1

3.8 Debugging

A couple of debugging tools are provided. The most useful is the debug decorator which will store the local variables
of a function in a dictionary or in your global scope.

from mmfutils.debugging import debug

@debug(locals())

def f(x):
y = x*%%x1.5
z = 2/x

return z

print (£(2.0), x, y, z)

1.0 2.0 2.8284271247461903 1.0

3.8. Debugging 39

MMFUtils Documentation, Release 0.5.4dev

3.9 Mathematics

We include a few mathematical tools here too. In particular, numerical integration and differentiation. Check the API
documentation for details.

40 Chapter 3. Usage

CHAPTER
FOUR

DEVELOPER INSTRUCTIONS

If you are a developer of this package, there are a few things to be aware of.

1. If you modify the notebooks in docs/notebooks then you may need to regenerate some of the . rst files
and commit them so they appear on bitbucket. This is done automatically by the pre—commit hook in . hgrc
if you include this in your .hg/hgrc file with a line like:

%include ../.hgrc

Security Warning: if you do this, be sure to inspect the . hgrc file carefully to make sure that no one inserts malicious
code.

This runs the following code:

!cd $ROOTDIR; Jjupyter nbconvert —--to=rst --output=README.rst doc/README.ipynb

[NbConvertApp] Converting notebook doc/README.ipynb to rst
[NbConvertApp] Support files will be in README_files/
[NbConvertApp] Making directory doc/README_files
[NbConvertApp] Making directory doc/README_files
[NbConvertApp] Writing 52142 bytes to doc/README.rst

We also run a comprehensive set of tests, and the pre-commit hook will fail if any of these do not pass, or if we don’t
have complete code coverage. We run these tests in a conda environment that can be made using the makefile:

make test # nox

To run these manually in a specific environment, you could do:

cond activate _mmfutils
pytest

Here is an example:

!'cd $ROOTDIR; conda activate _mmfutils; pytest -n4

Complete code coverage information is provided in build/_coverage/index.html.

from IPython.display import HTML

with open (os.path.join (ROOTDIR, 'build/_coverage/index.html')) as f:
coverage = f.read()

HTML (coverage)

41

MMFUtils Documentation, Release 0.5.4dev

4.1 Releases

We try to keep the repository clean with the following properties:

1. The default branch is stable: i.e. if someone runs hg clone, this will pull the latest stable release.

2. Each release has its own named branch so that e.g. hg up 0.5.0 will get the right thing. Note: this should

update to the development branch, not the default branch so that any work committed will not pollute the
development branch (which would violate the previous point).

To do this, we advocate the following proceedure.

1. Update to Correct Branch: Make sure this is the correct development branch, not the default branch by

explicitly updating:

hg up <version>

(Compare with hg up default which should take you to the default branch instead.)

2. Work: Do your work, committing as required with messages as shown in the repository with the following keys:

¢ DOC: Documentation changes.

e APTI: Changes to the exising API. This could break old code.

e EHN: Enhancement or new functionality. Without an AP T tag, these should not break existing codes.
e BLD: Build system changes (setup.py, requirements.txt etc.)

* TST: Update tests, code coverage, etc.

* BUG: Address an issue as filed on the issue tracker.

e BRN: Start a new branch (see below).

¢ REL: Release (see below).

e WIP: Work in progress. Do not depend on these! They will be stripped. This is useful when testing things
like the rendering of documentation on bitbucket etc. where you need to push an incomplete set of files.
Please collapse and strip these eventually when you get things working.

e CHK: Checkpoints. These should not be pushed to bitbucket!

3. Tests: Make sure the tests pass. Comprehensive tests should be run with nox:

nox

Quick tests while developing can be run with the _mmfutils environment:

conda env update --file environment.yml
conda activate _mmfutils; pytest

(hg com will automatically run tests after pip-installing everything in setup.py if you have linked the .
hgrc file as discussed above, but the use of independent environments is preferred now.)

. Update Docs: Update the documentation if needed. To generate new documentation run:

cd doc
sphinx-apidoc -eTE ../mmfutils -o source
rm source/mmfutils.xtestsx

* Include any changes at the bottom of this file (doc/README . ipynb).

42

Chapter 4. Developer Instructions

MMFUtils Documentation, Release 0.5.4dev

* You may need to copy new figures to README_files/ if the figure numbers have changed, and then hg
add these while hg rm the old ones.

Edit any new files created (titles often need to be added) and check that this looks good with

make html
open build/html/index.html

Look especially for errors of the type “WARNING: document isn’t included in any toctree”. This indicates that
you probably need to add the module to an upper level . . toctree: :. Also look for “WARNING: toctree
contains reference to document u’...’ that doesn’t have a title: no link will be generated”. This indicates you
need to add a title to a new file. For example, when I added the mmf .math.optimize module, I needed to
update the following:

doc/source/mmfutils.rst

mmfutils

toctree::

mmfutils.optimize

doc/source/mmfutils.optimize.rst

mmfutils.optimize

automodule:: mmfutils.optimize

:members:
:undoc-members:
:show—-inheritance:

. Clean up History: Run hg histedit, hg rebase, or hg strip as needed to clean up the repo before

you push. Branches should generally be linear unless there is an exceptional reason to split development.

. Release: Firsteditmmfutils/__init__ .py to update the version number by removing the dev part of the

version number. Commit only this change and then push only the branch you are working on:

bash hg com -m "REL: <version>" hg push -b

. Pull Request: Create a pull request on the development fork from your branch to default on the release

project bitbucket. Review it, fix anything, then accept the PR and close the branch.

. Publish on PyPI: Publish the released version on PyPI using twine

Build the package.
python setup.py sdist bdist_wheel

Test that everything looks right:
twine upload --repository-url https://test.pypi.org/legacy/ dist/x

Upload to PyPI
twine upload dist/=*

. Build Conda Package: This will run all the tests in a fresh environment as specified by meta.yaml. Make

sure that the dependencies in meta.yaml, environment .yml, and setup.py are consistent. Note that
the list of versions to be built is specified in conda_build_config.yaml.

4.1.

Releases 43

https://pypi.org/project/mmfutils/
https://pypi.org/project/twine/

MMFUtils Documentation, Release 0.5.4dev

conda build

conda build . —--output # Use this below

anaconda login

anaconda upload --all /data/apps/conda/conda-bld/noarch/mmfutils-0.5.0-py_0O.tar.
—bz2

10. Start new branch: On the same development branch (not default), increase the version number in
mmfutils/_ _init_ .py and add dev: i.e.:

__version__ = '0.5.1dev’

Then create this branch and commit this:

hg branch "0.5.1"
hg com -m "BRN: Started branch 0.5.1"

11. Optional: Update any setup . py files that depend on your new features/fixes etc.

44 Chapter 4. Developer Instructions

CHAPTER
FIVE

5.1

5.2

CHANGE LOG

REL: 0.5.4

Drop support for Python 3.5.

Use Nox for testing (see Notes.md)

REL: 0.5.3

Allow Python 3.8. Previous version required python <= 3.7 due to an issue with ipyparallel. This has been
resolved with revision 6.2.5 which is available with conda.

5.3

REL: 0.5.1

API changes:

5.4

Split mmfutils.containers.Object into ObjectBase which is simple and ObjectMixin which
provides the picking support. Demonstrate in docs how the pickling can be useful, but slows copying.

REL: 0.5.0

API changes:

Python 3 support only.

mmfutils.math.bases.interface renamed tommfutils.math.bases.interfaces.
Added default class-variable attribute support to emmfutils.containers.Object.

Minor enhancements to mmfutils.math.bases.PeriodicBasis to enhance GPU support.

Added mmfutils.math.bases.interfaces.IBasisLz and supportinmmfutils.math.bases.
bases.PeriodicBasis for rotating frames.

Cleanup of build environment and tests.

Single environment _mmfutils now used for testing and documentation.

45

https://nox.thea.codes
../Notes.md
https://github.com/ipython/ipyparallel/issues/396

MMFUtils Documentation, Release 0.5.4dev

5.5 REL: 0.4.13

API changes:
e Use @implementer () class decorator rather than classImplements or implements in all interfaces.

e Improve NoInterrupt context. Added NoInterrupt.unregister (): this allows NoInterrupt to
work in a notebook cell even when the signal handlers are reset. (But only works in that one cell.)

* Added Abel transform integrate?2 to Cylindrical bases.
Issues:
* Resolved issue #22: Masked arrays work with imcontourf etc.
* Resolved issue #23: NoInterrupt works well except in notebooks due to ipykernel issue #328.

* Resolved issue #24: Python 3 is now fully supported and tested.

5.6 REL: 0.4.10

API changes:

¢ Added contourf,error_line,and ListCollections tommfutils.plot.

Added Python 3 support (still a couple of issues such as mmfutils.math.integrate.ssum_inline.)

* Added mmf .math.bases.IBasisKx and update lagrangian in bases to accept k2 and kx2 for modi-
fied dispersion control (along x).

¢ Added math.special.ellipkinv.
* Added some new mmfutils.math.linalg tools.
Issues:
¢ Resolved issue #20: DyadicSumand scipy.optimize.nonlin.Jacobian
* Resolved issue #22: imcontourf now respects masked arrays.

* Resolved issue #24: Support Python 3.

5.7 REL:0.4.9

< incomplete >

5.8 REL: 0.4.7

API changes:
e Addedmmfutils.interface.describe_interface () for inserting interfaces into documentation.
* Added some DVR basis code tommfutils.math.bases.
* Added a diverging colormap and some support in mmfutils.plot.

e Added a Wigner Ville distribution computation in mmfutils.math.wigner

46 Chapter 5. Change Log

https://github.com/ipython/ipykernel/issues/328

MMFUtils Documentation, Release 0.5.4dev

e Added mmfutils.optimize.usolve and ubrentq for finding roots with “uncertanties <https:

/Ipythonhosted.org/uncertainties/>"__ support.

Issues:

* Resolve issue #8: Use " ipyparallel <https:/github.com/ipython/ipyparallel>"__ now.

* Resolve issue #9: Use pytest rather than nose (which is no longer supported).
* Resolve issue #10: PYFFTW wrappers now support negative axis and axes arguments.

* Address issue #11: Preliminary version of some DVR basis classes.

* Resolve issue #12: Added solvers with “uncertanties <https:/pythonhosted.org/uncertainties/>"__ sup-

port.

5.8. REL:0.4.7

47

https://pythonhosted.org/uncertainties/
https://pythonhosted.org/uncertainties/
https://github.com/ipython/ipyparallel
https://pytest.org
https://pythonhosted.org/uncertainties/

MMFUtils Documentation, Release 0.5.4dev

48

Chapter 5. Change Log

CHAPTER
SIX

INDICES AND TABLES

* genindex
¢ modindex

¢ search

49

MMFUtils Documentation, Release 0.5.4dev

50

Chapter 6. Indices and tables

m

mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils

.containers,5
.contexts,9
.debugging, 14
.interface, 3

.math, 22
.math.differentiate, 19
.math.integrate, 16
.math.linalg, 22
.math.wigner, 22
.optimize, 23
.performance, 25
.performance.fft, 23
.performance.numexpr, 25
.performance.threads, 25
.solve, 26

.testing, 26

PYTHON MODULE INDEX

51

MMFUtils Documentation, Release 0.5.4dev

52

Python Module Index

Symbols

__bool___ () (mmfutils.contexts.Nolnterrupt method),

12

__enter__ () (mmfutils.contexts.Nolnterrupt method),
12

__nonzero__ () (mmfutils.contexts.Nolnterrupt
method), 12

___setattr__ () (mmfutils.containers.ObjectBase
method), 9

A

allclose () (in module mmfutils.testing), 26
Attribute (class in mmfutils.interface), 3

B

block_diag () (in module mmfutils.math.linalg), 22

bracket_monotonic () (in module mmfu-
tils.optimize), 23

clear_locals () (mmfu-
tils.debugging.persistent_locals method),

15
close () (mmfutils.contexts. CoroutineWrapper
method), 9
Container (class in mmfutils.containers), 5
ContainerDict (class in mmfutils.containers), 6
ContainerList (class in mmfutils.containers), 6
coroutine () (in module mmfutils.contexts), 13

CoroutineWrapper (class in mmfutils.contexts), 9

D

debug () (in module mmfutils.debugging), 14

describe_interface () (in module mmfu-
tils.interface), 3
differentiate () (in module mmfu-

tils.math.differentiate), 19

F

£t () (in module mmfutils.performance.fft), 24
fftfreq() (in module mmfutils.performance.fft), 24

INDEX

fftn () (in module mmfutils.performance.fft), 24

force_n (mmfutils.contexts.Nolnterrupt attribute), 10,
12

force_timeout (mmfutils.contexts.Nolnterrupt at-
tribute), 10, 12

G

get_persistent_rep () (mmfu-
tils.containers.ObjectBase method), 9

handle_original_signal () (mmfu-
tils.contexts.Nolnterrupt class method),

12

handle_signal () (mmfutils.contexts.Nolnterrupt
class method), 12

hessian () (in module mmfutils.math.differentiate), 21

ifft () (in module mmfutils.performance.fft), 24

ifftn () (in module mmfutils.performance.fft), 24

implementer (class in mmfutils.interface), 4

init () (mmfutils.containers.ObjectBase method), 9

initialized (mmfutils.containers.ObjectBase
tribute), 9

Interface (mmfutils.interface interface), 3

interface (mmfutils.interface.Attribute attribute), 3

interfaces (mmfutils.interface.implementer at-
tribute), 4

is_main_thread () (in module mmfutils.contexts), 14

is_registered() (mmfutils.contexts.Nolnterrupt
class method), 12

at-

L

locals () (mmfutils.debugging.persistent_locals prop-
erty), 15

M

map () (mmfutils.contexts.Nolnterrupt method), 12
mmfutils.containers

module, 5
mmfutils.contexts

53

MMFUtils Documentation, Release 0.5.4dev

module, 9

mmfutils.debugging

module, 14

mmfutils.interface

module, 3

mmfutils.math

module, 22

mmfutils.math.differentiate

module, 19

mmfutils.math.integrate

module, 16

mmfutils.math.linalg

module, 22

mmfutils.math.wigner

module, 22

mmfutils.optimize

module, 23

mmfutils.performance

module, 25

mmfutils.performance.fft

module, 23

mmfutils.performance.numexpr

module, 25

mmfutils.performance.threads

module, 25

mmfutils.solve

module, 26

mmfutils.testing

module, 26

module
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils
mmfutils

.containers,5
.contexts, 9
.debugging, 14
.interface, 3

.math, 22
.math.differentiate, 19
.math.integrate, 16
.math.linalg, 22
.math.wigner, 22
.optimize, 23
.performance, 25
.performance.fft, 23
.performance.numexpr, 25
.performance.threads, 25
.solve, 26

.testing, 26

mquad () (in module mmfutils.math.integrate), 17

N

NoInterrupt (class in mmfutils.contexts), 9

nointerrupt () (in module mmfutils.contexts), 14

O

Object (class in mmfutils.containers), 6

ObjectBase (class in mmfutils.containers), 7

F)

persistent_locals (class in mmfutils.debugging),
15

picklable_attributes
tils.containers.ObjectBase attribute), 9

(mmfu-

Q

quad () (in module mmfutils.math.integrate), 18

R

register () (mmfutils.contexts.Nolnterrupt class
method), 12

resample () (in module mmfutils.performance.fft), 24

reset () (mmfutils.contexts.Nolnterrupt class method),

12

resume () (mmfutils.contexts.Nolnterrupt class
method), 12

Richardson () (in module mmfutils.math.integrate),
16

rsum () (in module mmfutils.math.integrate), 19

S

send () (mmfutils.contexts.CoroutineWrapper method),
9

set_num_threads () (in module
tils.performance.threads), 25

set_signals () (mmfutils.contexts.Nolnterrupt class
method), 12

suspend () (mmfutils.contexts.Nolnterrupt ~ class
method), 12

mmfu-

U

ubrentqg () (in module mmfutils.optimize), 23
unregister () (mmfutils.contexts.Nolnterrupt class
method), 12

usolve () (in module mmfutils.optimize), 23

V

verifyClass () (in module mmfutils.interface), 4
verifyObject () (in module mmfutils.interface), 4

W

wigner_ville () (in module mmfutils.math.wigner),
22

54

Index

	mmfutils
	mmfutils.interface
	mmfutils.containers
	mmfutils.contexts
	mmfutils.debugging
	mmfutils.math
	mmfutils.optimize
	mmfutils.performance
	mmfutils.plot
	mmfutils.parallel
	mmfutils.solve
	mmfutils.testing

	MMF Utils
	Installing

	Usage
	Containers
	Contexts
	Interfaces
	Parallel
	Performance
	Plotting
	Angular Variables
	Debugging
	Mathematics

	Developer Instructions
	Releases

	Change Log
	REL: 0.5.4
	REL: 0.5.3
	REL: 0.5.1
	REL: 0.5.0
	REL: 0.4.13
	REL: 0.4.10
	REL: 0.4.9
	REL: 0.4.7

	Indices and tables
	Python Module Index
	Index

